

Farmacologia

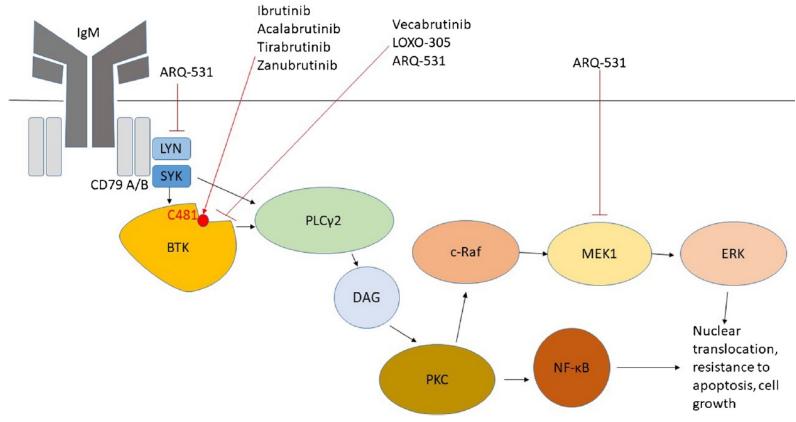
Romano Danesi

UO Farmacologia clinica e Farmacogenetica

TORINO

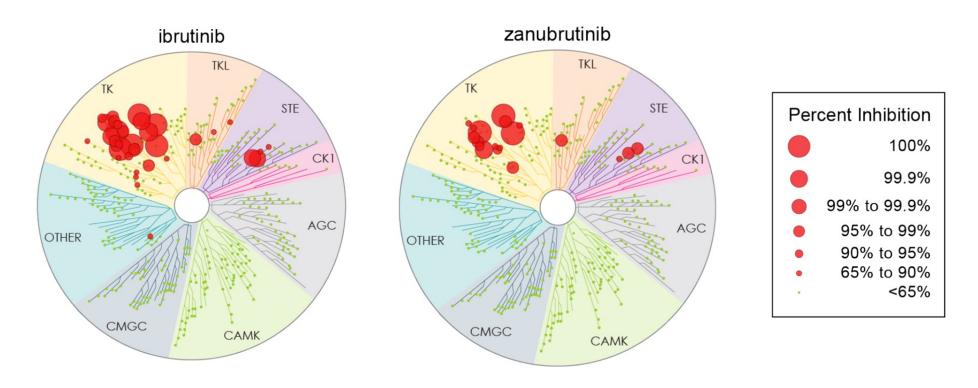
Università di Pisa

5 Aprile 2022 Starhotels Majestic



Disclosures of Romano Danesi

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
MSD			Х		х		
Eisai			Х		X	X	
AstraZeneca	X		Х		X	Х	
Beigene					X		
Janssen	X		Х		X		
Novartis			X		X		
Lilly			X		X		
Incyte			X		X		
AB Science			X				


Mechanism of action of BTK inhibitors

Bond DA, Woyach JA. Curr Hematol Malig Rep (2019) 14:197–205

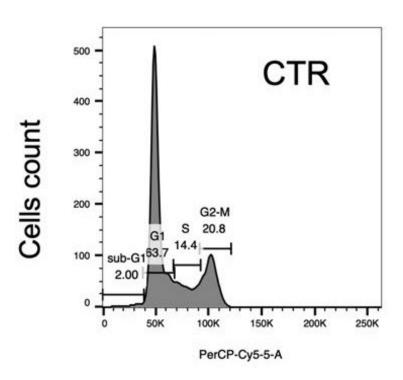
Kinome profiling at 1 μ M of ibrutinib and zanubrutinib

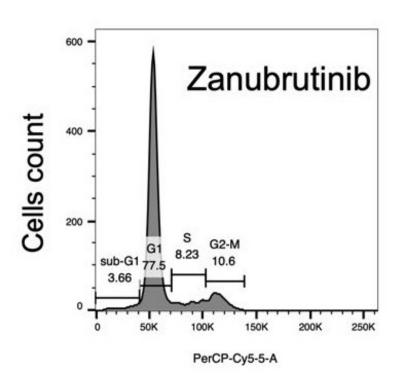
Kaptein A et al. Blood (2018) 132 (Supplement 1): 1871

IC₅₀ of BTK and members of the TEC protein kinase family by ibrutinib and zanubrutinib

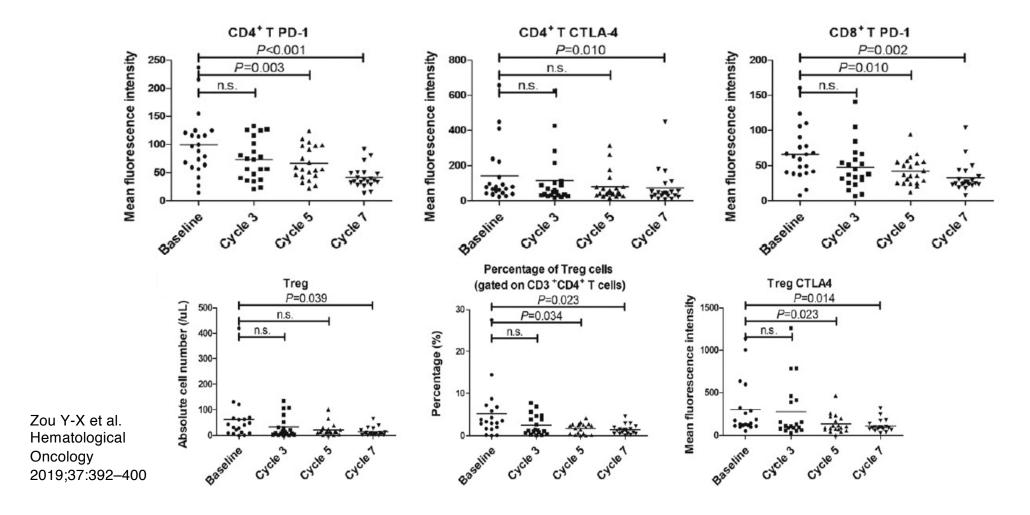
Kinase	Ibrutinib IC ₅₀ (nM) ^a	Zanubrutinib IC ₅₀ (nM) ^b			
BLK	0.1 + 0.0	1.13 ^c			
BMX 0.8 ± 0.1		0.62 ^c			
BTK	1.5	0.3 ± 0.06			
EGFR	5.3 ± 1.3	$2.6 \pm 1.0^{\circ}$			
ERBB2	6.4 ± 1.8	530 ± 273			
ERBB4	3.4 ± 1.4	1.58 ^c			
ITK	4.9 ± 1.25	56 ± 12			
JAK3 32 ± 15.0		580 ± 21			
TEC 10 ± 2.0		2.0 ± 0.8			
TXK 2.0 ± 0.3		2.95 ^c			

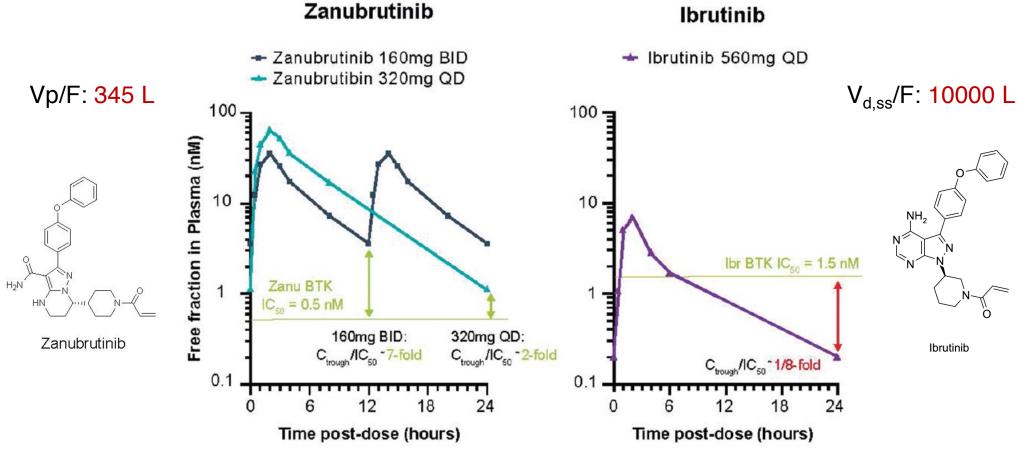
Selectivity of zanubrutinib and ibrutinib on selected kinases


Relative to BTK IC₅₀ (0.3/0.5 nM)


Relative to BTK IC₅₀ (1.5 nM)

Kinase ^a	Zanubrutinib selectivity	Ibrutinib selectivity ^b
EGFR	42	3.5
ITK	100	3.3
TEC	88	6.7
HER2	176	4.3
HER4	13.8	2.3
BMX	2.8	0.5
TXK	4.4	1.3
BLK	5.0	0.1
JAK3	2754	21


Cell cycle distribution after treatment with zanubrutinib

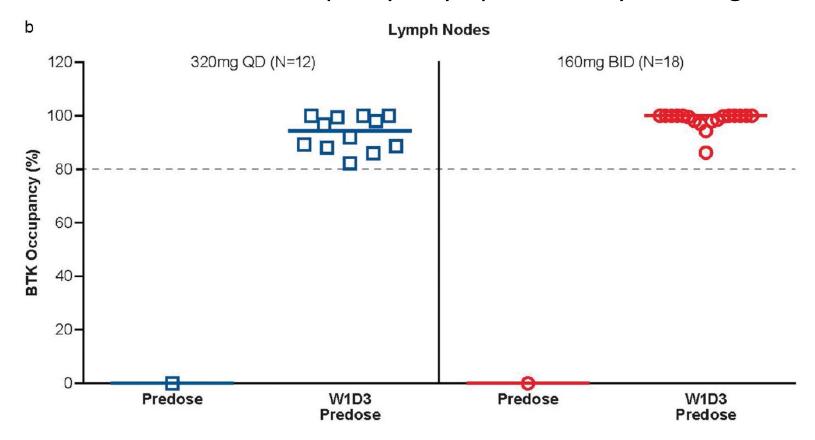


Dynamics of T cells and their subsets changes during zanubrutinib treatment

Free drug concentration time profiles relative to IC50 of BTK

Tam CS et al. Expert Review of Clinical Pharmacology 2021;14:11,1329-1344

Marostica E et al. Cancer Chemother Pharmacol. 2015;75:111–21 9

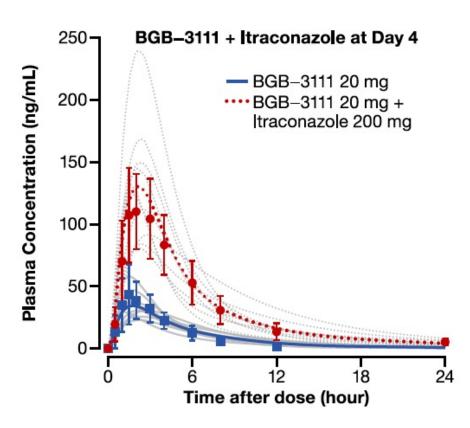

Zanubrutinib BTK occupancy in PBMC by dose regimen

Tam CS et al. Blood 2019;134(11):851-859
Tam CS et al. Expert Review of Clinical Pharmacology 2021;14:11,1329-1344

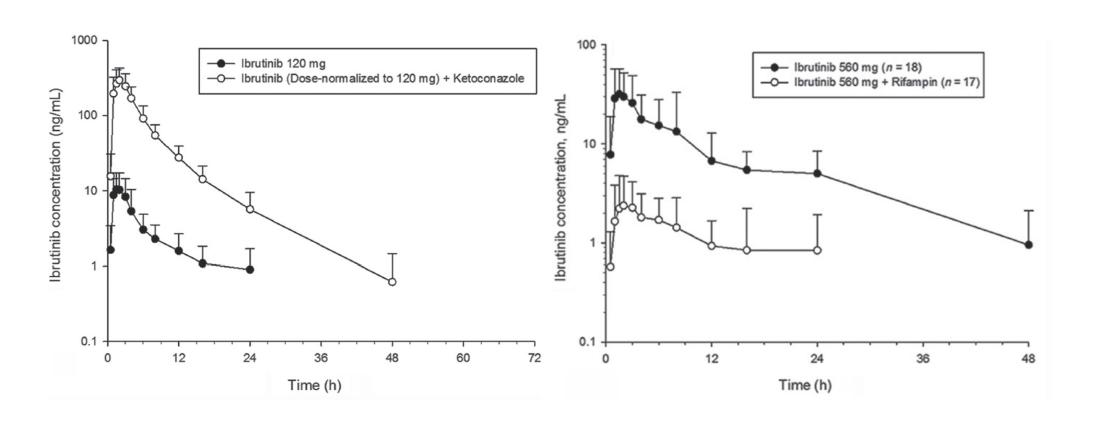
Zanubrutinib BTK occupancy in lymph nodes by dose regimen

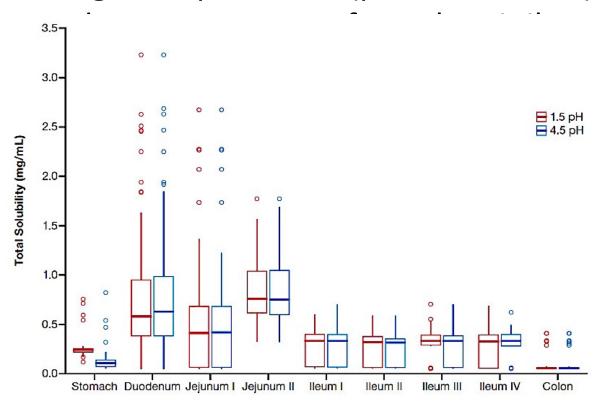
Tam CS et al. Blood 2019;134(11):851-859
Tam CS et al. Expert Review of Clinical Pharmacology 2021;14:11,1329-1344




Pharmacologic characteristics of zanubrutinib and ibrutinib

	Zanubrutinib	Ibrutinib		
Approved indications	MCL, WM*	MCL, CLL, and WM. MZL chronic graft versus host disease (cGVHD)		
FDA approved dose	160 mg BID or 320 mg QD	420 or 560 mg QD		
IC ₅₀ against BTK (nM) [24]	0.5	1.5		
Potency of major active metabolite against BTK	NA	~15-fold less potent compared to the parent molecu		
Half-life (hr)	~2 to 4	~4 to 6		
Plasma protein binding (%)	~94%	97.3% – 97.7% [15]		
AUC _{0-24hr} (CV%) ng·hr/mL	160 mg BID: 2295 (37%) 320 mg QD: 2180 (41%)	420 mg QD: 707–1159 (50%-72%) 560 mg QD: 865–978 (69%-82%)		
fu. AUC _{0-24hr} (nM·hr)	160 mg BID: 278 320 mg QD: 267	420 mg QD: 37–60 560 mg QD: 46–51		
Plasma exposure of major active metabolite	NA	1- to 2.8-fold higher than parent AUC [15]		
Median BTK occupancy in PBMC at trough	320 mg QD:100% 160 mg BID: 100%	420 mg to 820 mg QD: >90% [30,33]		
Median BTK occupancy in lymph node at trough	320 mg QD: 94% 160 mg BID: 100%	420 mg QD: >90% [16]		
Pgp and brain penetration	Weak P-gp substrate Brain penetration data in patients available	Not a P-gp substrate Brain penetration data in patients available		
Major enzyme involved	СҮРЗА	СҮРЗА		


DDI of zanubrutinib with CYP3A4 modulators

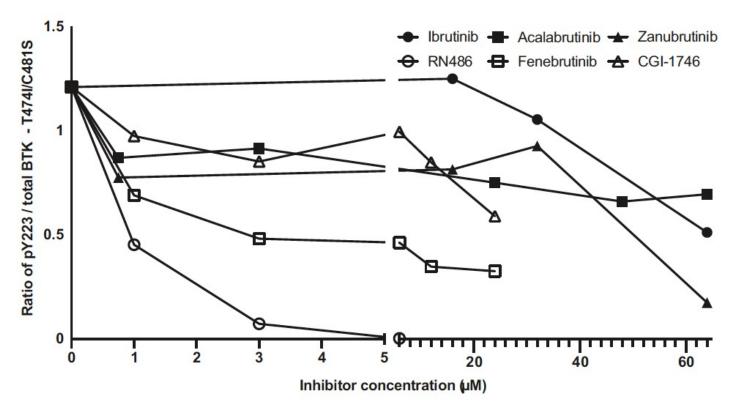


DDI of ibrutinib with CYP3A4 modulators

Predicted effect of gastric pH values (pH=1.5 and 4.5) on solubility

Wang K et al. CPT Pharmacometrics Syst Pharmacol 2021;10:441– 454

PK Parameters	pH=1.5	pH=4.5	Ratio
C _{max} , ng/mL (95%CI)	238.39 (206.79-274.81)	232.40 (201.07-268.60)	1.03
AUC _{0-24hr} , ng*hr/mL (95%CI)	1444.15 (1308.28-1594.13)	1456.12 (1320.47-1605.70)	0.99



Effects of ibrutinib on BTK activity in single and double variants

	BTK residue single variants				BTK residue:	s double variants
	T474E T474V T474L T474I T474Q T474S	T474A T474N	T474P	T474M	T474A/C481S T474S/C481S	T474I/C481S T474M/C481S T474M/C481T
BTK activity	normal	weak	absent	normal	weak	normal
Ibrutinib inhibitory cond	0.5 c. (μM)	0.5	_	≥4	0.5	> 64

Comparison of ibrutinib on mechanisms of resistance with secondgeneration BTK inhibitors

Conclusions

- Zanubrutinib is an oral inhibitor of Bruton's tyrosine kinase designed for greater target selectivity and higher therapeutic exposures than the first-in-class BTK inhibitor ibrutinib.
- Zanubrutinib forms an irreversible, covalent bond at Cys481 within the adenosine triphosphate-binding pocket of BTK.
- The greater selectivity of zanubrutinib as well as its PK/PD profiles translates into clinically impactful benefits, including improved dosing flexibility, safety, and efficacy.